You are here : Home > LPCV > Decontamination of radionuclides in liquid effluents with a micro-alga: Feasibility study at laboratory scale and at pilot scale

Diane de Gouvion Saint Cyr

Decontamination of radionuclides in liquid effluents with a micro-alga: Feasibility study at laboratory scale and at pilot scale

Published on 6 June 2014


Thesis presented June 06, 2014

Abstract :
Nuclear plants produce radioactive liquid wastes which are decontaminated before they are released. Radioactive cobalt and silver are the main radionuclides released by water pressurized reactor, after tritium and carbon 14. Liquid effluents are decontaminated by physic-chemical processes, such as evaporation, coagulation, sorption and ion exchange. These technologies are very efficient but cannot neutralize entirely the carbon-14 and, in the case of emergency situation, they are difficult to implement in order to decontaminate high amount of radioactive liquids. It is necessary to look for alternative decontamination methods. Bio-remediation technologies may constitute interesting alternatives in the nuclear field as well, but only a few bio-based technologies have been proposed. This work aims to develop a treatment unit based on the use of a photosynthetic micro-alga, extremely radio-tolerant and owning high capacity to concentrate radionuclides and toxic metals. The technical specification was draft to design the process and construct the pilot unit taking into account the constraints linked to the use of a biological matrix in a nuclear environment. The pilot-scale treatment unit, based on this micro-alga, includes different tasks to ensure the objectives of the process: algae have first to be produced in a growth medium and harvested before ensuring the treatment of the contaminated effluent. The feasibility of these operations is studied at laboratory scale. Operating conditions and monitoring and optimization tools for each step, (i) biomass production, (ii) biomass separation and concentration by microfiltration, (iii) effluent decontamination of silver-110m, cobalt-60, carbon-14, are sought. Based on the results obtained at laboratory scale, the feasibility of bio-decontamination of radionuclides by the micro-alga at pilot-scale is studied and demonstrated. Through this work, the development of an innovative process has to be considered for the decontamination of liquid effluents from the nuclear industry. This work confirms the high potential of algae to ensure the pollutants elimination.


Keywords:
Nuclear effluents treatment, bioprocess, micro-algae, microfiltration