You are here : Home > LPCV > Identification of the mechanisms of mixotrophy in Phaeodactylum tricornutum

Valeria Villanova

Identification of the mechanisms of mixotrophy in Phaeodactylum tricornutum

Published on 12 September 2016


Thesis presented September 12, 2016

Abstract:
Diatoms are photosynthetic organisms with a strong influence on the global biogeochemistry. Moreover, they are extremely interesting as potential feedstocks for the production of high-value molecules and biofuel. They are endosymbiotic organisms originated by the fusion of a heterotrophic ancestor with one or more photosynthetic microalgae. This has led to an extremely flexible cell metabolism. Like other microalgae, diatoms are able to grow in the presence of both light and of a reduced carbon source. The simultaneous use of photosynthesis and respiration can increase biomass productivity and reduce the energy cost of the industrial exploitation of diatoms. In this project, the mechanism and the consequences of mixotrophic metabolism have been studied in the model diatom Phaeodactylum tricornutum. In the first part, I have studied the molecular mechanism governing the interactions between chloroplast and mitochondrion. We have demonstrated that the NADPH generated in the plastid is exported to the mitochondrion to generate additional ATP, which, once back to the plastid, is used for carbon fixation. Overall, this work shows that the interaction between these two organelles increases carbon fixation and growth in diatoms. We hence suggest that the simultaneous use of carbon and light energy sources (i.e. mixotrophy) should enhance biomass productivity in diatoms. This hypothesis has been tested in the second part of my thesis, where I focused on the consequences of mixotrophy on metabolism. By combining metabolomics, transcriptomics, lipidomicc and physiology approaches, I have contributed to elucidate the main pathways targeted by mixotrophy (central carbon, lipid and storage carbon metabolism). In the last part of this work, I have worked on improving the culture conditions and medium composition to boost microalgal productivity by mixotrophy. These conditions have been scaled-up in lab scale photobioreactors, revealing the industrial exploitation potential of Phaeodactylum.


Keywords:
Diatoms, mixotrophy, photosynthesis, chloroplast, mitochondria, respiration

Download this thesis.