You are here : Home > LPCV > Actin filaments networks disassembly: Role of architecture and confinement

Laurène Gressin

Actin filaments networks disassembly: Role of architecture and confinement

Published on 18 November 2016


Thesis presented November 18, 2016

Abstract:
The actin cytoskeleton is a major component of the internal architecture of eukaryotic cells. Actin filaments are organized into different structures, the dynamics of which is spatially and temporally controlled by the polymerization and disassembly of filaments. Most actin structures are in a dynamic steady state regime where the assembly is balanced by the disassembly, which maintains a high concentration of intracellular actin monomers. In vivo the pool of actin monomers is limited and the formation of new actin filament structures is dependent on an effective disassembly of the older structures. The goal of my thesis was to study the influence of different architectures of actin by the disassembly machinery made of ADF/cofilin and its cofactor Aip1.
Firstly, I showed that the efficiency of the disassembly was dependent on the architecture of actin filaments organizations. Although the branched networks need only ADF/cofilin to be efficiently disassembled, the actin cables require the simultaneous action of ADF/cofilin and Aip1. Further investigations at the molecular scale indicate that the cooperation between ADF/cofilin and Aip1 is optimal above a certain threshold of molecules of ADF/cofilin bound to actin filaments. During my PhD, I demonstrated that although ADF/cofilin is able to dismantle selectively branched networks through severing and debranching, the stochastic disassembly of actin filaments by ADF/cofilin and Aip1 represents an efficient alternative pathway for the full disassembly of all actin networks. We propose a model in which the binding of ADF/cofilin is required to trigger a structural change of the actin filaments, as a prerequisite for their disassembly by Aip1.
Secondly, I developed an experimental system made of cell-sized microwells. This technology allowed us to develop experiments in a closed environment in which the actin pool is limited in the same way as the cellular environment. I used this experimental system to study how a limited pool of components limits both the assembly and the disassembly of a branched network.
This thesis highlights the importance of developing new tools to obtain more “physiological” reconstituted systems in vitro to establish some of the general principles governing actin dynamics.


Keywords:
Actin filaments networks, disassembly, micropatterns, microwells, confinement

Download this thesis.